

LINEAR ALGEBRA with Applications

Open Edition

ADAPTABLE | ACCESSIBLE | AFFORDABLE

Adapted for

Emory University

Math 221

Linear Algebra

Sections 1 & 2 Lectured and adapted by

Le Chen

April 15, 2021

le.chen@emory.edu
Course page
http://math.emory.edu/~lchen41/teaching/2021_Spring_Math221

by W. Keith Nicholson Creative Commons License (CC BY-NC-SA)

Contents

1	Systems of Linear Equations				
	1.1	Solutions and Elementary Operations	6		
	1.2	Gaussian Elimination	16		
	1.3	Homogeneous Equations	28		
	Sup	plementary Exercises for Chapter 1	37		
2	Ma	trix Algebra	39		
	2.1	Matrix Addition, Scalar Multiplication, and Transposition	40		
	2.2	Matrix-Vector Multiplication	53		
	2.3	Matrix Multiplication	72		
	2.4	Matrix Inverses	91		
	2.5	Elementary Matrices	109		
	2.6	Linear Transformations	119		
	2.7	LU-Factorization	135		
3	Determinants and Diagonalization				
	3.1	The Cofactor Expansion	148		
	3.2	Determinants and Matrix Inverses	163		
	3.3	Diagonalization and Eigenvalues	178		
	Sup	plementary Exercises for Chapter 3	201		
4	Vector Geometry 2				
	4.1	Vectors and Lines	204		
	4.2	Projections and Planes	223		
	4.3	More on the Cross Product	244		
	4.4	Linear Operators on \mathbb{R}^3	251		
	Sup	plementary Exercises for Chapter 4	260		
5	Vector Space \mathbb{R}^n 2				
	5.1	Subspaces and Spanning	264		
	5.2	Independence and Dimension	273		
	5.3	Orthogonality	287		
	5.4	Rank of a Matrix	297		

$4 \equiv \text{CONTENTS}$

	5.5	Similarity and Diagonalization	,
	Supp	plementary Exercises for Chapter 5	1
6	Vec	tor Spaces 321	
	6.1	Examples and Basic Properties	1
	6.2	Subspaces and Spanning Sets	,
	6.3	Linear Independence and Dimension	1
	6.4	Finite Dimensional Spaces	:
	Supp	plementary Exercises for Chapter 6	:
7	Line	ear Transformations 365	,
	7.1	Examples and Elementary Properties	į
	7.2	Kernel and Image of a Linear Transformation	:
	7.3	Isomorphisms and Composition	1
8	Ort	hogonality 399)
	8.1	Orthogonal Complements and Projections	1
	8.2	Orthogonal Diagonalization	1
	8.3	Positive Definite Matrices 421	
	8.4	QR-Factorization	,
	8.5	Computing Eigenvalues	
	8.6	The Singular Value Decomposition	,
		8.6.1 Singular Value Decompositions	,
		8.6.2 Fundamental Subspaces	1
		8.6.3 The Polar Decomposition of a Real Square Matrix	,
		8.6.4 The Pseudoinverse of a Matrix	,

2.1 Matrix Addition, Scalar Multiplication, and Transposition

A rectangular array of numbers is called a **matrix** (the plural is **matrices**), and the numbers are called the **entries** of the matrix. Matrices are usually denoted by uppercase letters: A, B, C, and so on. Hence,

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 5 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \quad C = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$

are matrices. Clearly matrices come in various shapes depending on the number of **rows** and **columns**. For example, the matrix A shown has 2 rows and 3 columns. In general, a matrix with m rows and n columns is referred to as an $m \times n$ **matrix** or as having **size** $m \times n$. Thus matrices A, B, and C above have sizes 2×3 , 2×2 , and 3×1 , respectively. A matrix of size $1 \times n$ is called a **row matrix**, whereas one of size $m \times 1$ is called a **column matrix**. Matrices of size $n \times n$ for some n are called **square** matrices.

Each entry of a matrix is identified by the row and column in which it lies. The rows are numbered from the top down, and the columns are numbered from left to right. Then the (i, j)-entry of a matrix is the number lying simultaneously in row i and column j. For example,

The (1, 2)-entry of
$$\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$
 is -1 .
The (2, 3)-entry of $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 5 & 6 \end{bmatrix}$ is 6.

A special notation is commonly used for the entries of a matrix. If A is an $m \times n$ matrix, and if the (i, j)-entry of A is denoted as a_{ij} , then A is displayed as follows:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}$$

This is usually denoted simply as $A = [a_{ij}]$. Thus a_{ij} is the entry in row *i* and column *j* of *A*. For example, a 3×4 matrix in this notation is written

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

It is worth pointing out a convention regarding rows and columns: *Rows are mentioned before columns*. For example:

- If a matrix has size $m \times n$, it has m rows and n columns.
- If we speak of the (i, j)-entry of a matrix, it lies in row i and column j.

• If an entry is denoted a_{ij} , the first subscript i refers to the row and the second subscript j to the column in which a_{ii} lies.

Two points (x_1, y_1) and (x_2, y_2) in the plane are equal if and only if² they have the same coordinates, that is $x_1 = x_2$ and $y_1 = y_2$. Similarly, two matrices A and B are called equal (written A = B) if and only if:

- 1. They have the same size.
- 2. Corresponding entries are equal.

If the entries of A and B are written in the form $A = [a_{ij}], B = [b_{ij}]$, described earlier, then the second condition takes the following form:

$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} b_{ij} \end{bmatrix}$$
 means $a_{ij} = b_{ij}$ for all i and j

Example 2.1.1

Given $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$ discuss the possibility that A = B, B = C, A = C. **Solution.** A = B is impossible because A and B are of different sizes: A is 2×2 whereas B is 2×3 . Similarly, B = C is impossible. But A = C is possible provided that corresponding entries are equal: $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$ means a = 1, b = 0, c = -1, and d = 2.

Matrix Addition

Definition 2.1 Matrix Addition

If A and B are matrices of the same size, their sum A + B is the matrix formed by adding corresponding entries.

If $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ and $B = \begin{bmatrix} b_{ij} \end{bmatrix}$, this takes the form

$$A + B = \left[a_{ij} + b_{ij}\right]$$

Note that addition is *not* defined for matrices of different sizes.

²If p and q are statements, we say that p implies q if q is true whenever p is true. Then "p if and only if q" means that both p implies q and q implies p. See Appendix ?? for more on this.

5

Example 2.1.2

If
$$A = \begin{bmatrix} 2 & 1 & 3 \\ -1 & 2 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 6 \end{bmatrix}$, compute $A + B$.
Solution.
 $A + B = \begin{bmatrix} 2+1 & 1+1 & 3-1 \\ -1+2 & 2+0 & 0+6 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 2 \\ 1 & 2 & 6 \end{bmatrix}$

Example 2.1.3

Find a, b, and c if $\begin{bmatrix} a & b & c \end{bmatrix} + \begin{bmatrix} c & a & b \end{bmatrix} = \begin{bmatrix} 3 & 2 & -1 \end{bmatrix}$.

Solution. Add the matrices on the left side to obtain

$$\begin{bmatrix} a+c & b+a & c+b \end{bmatrix} = \begin{bmatrix} 3 & 2 & -1 \end{bmatrix}$$

Because corresponding entries must be equal, this gives three equations: a + c = 3, b + a = 2, and c+b = -1. Solving these yields a = 3, b = -1, c = 0.

If A, B, and C are any matrices of the same size, then

$$A + B = B + A$$
 (commutative law)
$$A + (B + C) = (A + B) + C$$
 (associative law)

In fact, if $A = [a_{ij}]$ and $B = [b_{ij}]$, then the (i, j)-entries of A + B and B + A are, respectively, $a_{ij} + b_{ij}$ and $b_{ij} + a_{ij}$. Since these are equal for all *i* and *j*, we get

$$A + B = \begin{bmatrix} a_{ij} + b_{ij} \end{bmatrix} = \begin{bmatrix} b_{ij} + a_{ij} \end{bmatrix} = B + A$$

The associative law is verified similarly.

The $m \times n$ matrix in which every entry is zero is called the $m \times n$ zero matrix and is denoted as 0 (or 0_{mn} if it is important to emphasize the size). Hence,

$$0 + X = X$$

holds for all $m \times n$ matrices X. The **negative** of an $m \times n$ matrix A (written -A) is defined to be the $m \times n$ matrix obtained by multiplying each entry of A by -1. If $A = [a_{ij}]$, this becomes $-A = [-a_{ij}]$. Hence,

$$A + (-A) = 0$$

holds for all matrices A where, of course, 0 is the zero matrix of the same size as A.

A closely related notion is that of subtracting matrices. If A and B are two $m \times n$ matrices, their difference A - B is defined by

$$A - B = A + (-B)$$

Note that if $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ and $B = \begin{bmatrix} b_{ij} \end{bmatrix}$, then

$$A - B = [a_{ij}] + [-b_{ij}] = [a_{ij} - b_{ij}]$$

is the $m \times n$ matrix formed by *subtracting* corresponding entries.

Example 2.1.4

Let
$$A = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 2 & -4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -1 & 1 \\ -2 & 0 & 6 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & 1 \end{bmatrix}$. Compute $-A, A - B$, and
 $A + B - C$.
Solution.
 $-A = \begin{bmatrix} -3 & 1 & 0 \\ -1 & -2 & 4 \end{bmatrix}$
 $A - B = \begin{bmatrix} 3 - 1 & -1 - (-1) & 0 - 1 \\ 1 - (-2) & 2 - 0 & -4 - 6 \end{bmatrix} = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 2 & -10 \end{bmatrix}$
 $A + B - C = \begin{bmatrix} 3 + 1 - 1 & -1 - 1 - 0 & 0 + 1 - (-2) \\ 1 - 2 - 3 & 2 + 0 - 1 & -4 + 6 - 1 \end{bmatrix} = \begin{bmatrix} 3 & -2 & 3 \\ -4 & 1 & 1 \end{bmatrix}$

Example 2.1.5

Solve $\begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix} + X = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$ where X is a matrix.

Solution. We solve a numerical equation a + x = b by subtracting the number a from both sides to obtain x = b - a. This also works for matrices. To solve $\begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix} + X = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$ simply subtract the matrix $\begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix}$ from both sides to get $X = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} - \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 - 3 & 0 - 2 \\ -1 - (-1) & 2 - 1 \end{bmatrix} = \begin{bmatrix} -2 & -2 \\ 0 & 1 \end{bmatrix}$ The reader should verify that this matrix X does indeed satisfy the original equation.

The solution in Example 2.1.5 solves the single matrix equation A + X = B directly via matrix subtraction: X = B - A. This ability to work with matrices as entities lies at the heart of matrix algebra.

It is important to note that the sizes of matrices involved in some calculations are often determined by the context. For example, if

$$A+C = \left[\begin{array}{rrr} 1 & 3 & -1 \\ 2 & 0 & 1 \end{array} \right]$$

then A and C must be the same size (so that A + C makes sense), and that size must be 2×3 (so that the sum is 2×3). For simplicity we shall often omit reference to such facts when they are clear from the context.

44 CONTENTS

Scalar Multiplication

In gaussian elimination, multiplying a row of a matrix by a number k means multiplying *every* entry of that row by k.

Definition 2.2 Matrix Scalar Multiplication

More generally, if A is any matrix and k is any number, the **scalar multiple** kA is the matrix obtained from A by multiplying each entry of A by k.

If $A = [a_{ij}]$, this is

$$kA = \left[ka_{ij}\right]$$

Thus 1A = A and (-1)A = -A for any matrix A.

The term *scalar* arises here because the set of numbers from which the entries are drawn is usually referred to as the set of scalars. We have been using real numbers as scalars, but we could equally well have been using complex numbers.

Example 2.1.6 If $A = \begin{bmatrix} 3 & -1 & 4 \\ 2 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & 2 \end{bmatrix}$ compute $5A, \frac{1}{2}B$, and 3A - 2B. Solution. $5A = \begin{bmatrix} 15 & -5 & 20 \\ 10 & 0 & 20 \end{bmatrix}, \quad \frac{1}{2}B = \begin{bmatrix} \frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & 3 & -\frac{1}{2} \end{bmatrix}$

$$3A - 2B = \begin{bmatrix} 9 & -3 & 12 \\ 6 & 0 & 18 \end{bmatrix} - \begin{bmatrix} 2 & 4 & -2 \\ 0 & 6 & 4 \end{bmatrix} = \begin{bmatrix} 7 & -7 & 14 \\ 6 & -6 & 14 \end{bmatrix}$$

If A is any matrix, note that kA is the same size as A for all scalars k. We also have

0A = 0 and k0 = 0

because the zero matrix has every entry zero. In other words, kA = 0 if either k = 0 or A = 0. The converse of this statement is also true, as Example 2.1.7 shows.

Example 2.1.7

If kA = 0, show that either k = 0 or A = 0.

Solution. Write $A = [a_{ij}]$ so that kA = 0 means $ka_{ij} = 0$ for all i and j. If k = 0, there is nothing to do. If $k \neq 0$, then $ka_{ij} = 0$ implies that $a_{ij} = 0$ for all i and j; that is, A = 0.

For future reference, the basic properties of matrix addition and scalar multiplication are listed in Theorem 2.1.1.

Theorem 2.1.1

Let A, B, and C denote arbitrary $m \times n$ matrices where m and n are fixed. Let k and p denote arbitrary real numbers. Then

$$1. A + B = B + A.$$

2.
$$A + (B + C) = (A + B) + C$$
.

- 3. There is an $m \times n$ matrix 0, such that 0 + A = A for each A.
- 4. For each A there is an $m \times n$ matrix, -A, such that A + (-A) = 0.
- 5. k(A+B) = kA + kB.
- $6. \ (k+p)A = kA + pA.$
- 7. (kp)A = k(pA).
- 8. 1A = A.

Proof. Properties 1–4 were given previously. To check Property 5, let $A = [a_{ij}]$ and $B = [b_{ij}]$ denote matrices of the same size. Then $A + B = [a_{ij} + b_{ij}]$, as before, so the (i, j)-entry of k(A + B) is

$$k(a_{ij}+b_{ij})=ka_{ij}+kb_{ij}$$

But this is just the (i, j)-entry of kA + kB, and it follows that k(A + B) = kA + kB. The other Properties can be similarly verified; the details are left to the reader.

The Properties in Theorem 2.1.1 enable us to do calculations with matrices in much the same way that numerical calculations are carried out. To begin, Property 2 implies that the sum

$$(A+B)+C = A + (B+C)$$

is the same no matter how it is formed and so is written as A + B + C. Similarly, the sum

$$A + B + C + D$$

is independent of how it is formed; for example, it equals both (A+B) + (C+D) and A + [B + (C+D)]. Furthermore, property 1 ensures that, for example,

$$B+D+A+C=A+B+C+D$$

In other words, the *order* in which the matrices are added does not matter. A similar remark applies to sums of five (or more) matrices.

Properties 5 and 6 in Theorem 2.1.1 are called **distributive laws** for scalar multiplication, and they extend to sums of more than two terms. For example,

$$k(A+B-C) = kA + kB - kC$$
$$(k+p-m)A = kA + pA - mA$$

Similar observations hold for more than three summands. These facts, together with properties 7 and 8, enable us to simplify expressions by collecting like terms, expanding, and taking common factors in exactly the same way that algebraic expressions involving variables and real numbers are manipulated. The following example illustrates these techniques.

Example 2.1.8

Simplify 2(A+3C) - 3(2C-B) - 3[2(2A+B-4C) - 4(A-2C)] where A, B, and C are all matrices of the same size.

<u>Solution</u>. The reduction proceeds as though A, B, and C were variables.

$$2(A+3C) - 3(2C-B) - 3[2(2A+B-4C) - 4(A-2C)]$$

= 2A + 6C - 6C + 3B - 3[4A + 2B - 8C - 4A + 8C]
= 2A + 3B - 3[2B]
= 2A - 3B

Transpose of a Matrix

Many results about a matrix A involve the *rows* of A, and the corresponding result for columns is derived in an analogous way, essentially by replacing the word *row* by the word *column* throughout. The following definition is made with such applications in mind.

Definition 2.3 Transpose of a Matrix

If A is an $m \times n$ matrix, the **transpose** of A, written A^T , is the $n \times m$ matrix whose rows are just the columns of A in the same order.

In other words, the first row of A^T is the first column of A (that is it consists of the entries of column 1 in order). Similarly the second row of A^T is the second column of A, and so on.

Example 2.1.9

Write down the transpose of each of the following matrices.

$$A = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \quad B = \begin{bmatrix} 5 & 2 & 6 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \quad D = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 2 \\ -1 & 2 & 1 \end{bmatrix}$$

Solution.

$$A^{T} = \begin{bmatrix} 1 & 3 & 2 \end{bmatrix}, B^{T} = \begin{bmatrix} 5 \\ 2 \\ 6 \end{bmatrix}, C^{T} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}, \text{ and } D^{T} = D.$$

If $A = [a_{ij}]$ is a matrix, write $A^T = [b_{ij}]$. Then b_{ij} is the *j*th element of the *i*th row of A^T and so is the *j*th element of the *i*th column of A. This means $b_{ij} = a_{ji}$, so the definition of A^T can be stated as follows:

If
$$A = [a_{ij}]$$
, then $A^T = [a_{ji}]$. (2.1)

This is useful in verifying the following properties of transposition.

Theorem 2.1.2

Let A and B denote matrices of the same size, and let k denote a scalar.

1. If A is an $m \times n$ matrix, then A^T is an $n \times m$ matrix.

(

- 2. $(A^T)^T = A$. 3. $(kA)^T = kA^T$.
- $4. \ (A+B)^T = A^T + B^T.$

Proof. Property 1 is part of the definition of A^T , and Property 2 follows from (2.1). As to Property 3: If $A = [a_{ij}]$, then $kA = [ka_{ij}]$, so (2.1) gives

$$(kA)^{T} = [ka_{ji}] = k [a_{ji}] = kA^{T}$$

Finally, if $B = [b_{ij}]$, then $A + B = [c_{ij}]$ where $c_{ij} = a_{ij} + b_{ij}$ Then (2.1) gives Property 4:

$$(A+B)^{T} = [c_{ij}]^{T} = [c_{ji}] = [a_{ji}+b_{ji}] = [a_{ji}] + [b_{ji}] = A^{T} + B^{T}$$

There is another useful way to think of transposition. If $A = [a_{ij}]$ is an $m \times n$ matrix, the elements a_{11} , a_{22} , a_{33} , ... are called the **main diagonal** of A. Hence the main diagonal extends down and to the right from the upper left corner of the matrix A; it is shaded in the following examples:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$$

Thus forming the transpose of a matrix A can be viewed as "flipping" A about its main diagonal, or as "rotating" A through 180° about the line containing the main diagonal. This makes Property 2 in Theorem 2.1.2 transparent.

Example 2.1.10

Solve for A if $\begin{pmatrix} 2A^T - 3 \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \end{pmatrix}^T = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$.

Solution. Using Theorem 2.1.2, the left side of the equation is

$$\left(2A^{T}-3\begin{bmatrix}1&2\\-1&1\end{bmatrix}\right)^{T}=2\left(A^{T}\right)^{T}-3\begin{bmatrix}1&2\\-1&1\end{bmatrix}^{T}=2A-3\begin{bmatrix}1&-1\\2&1\end{bmatrix}$$

Hence the equation becomes

$$2A - 3\begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$$

Thus $2A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} + 3\begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 5 & 5 \end{bmatrix}$, so finally $A = \frac{1}{2}\begin{bmatrix} 5 & 0 \\ 5 & 5 \end{bmatrix} = \frac{5}{2}\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$.

Note that Example 2.1.10 can also be solved by first transposing both sides, then solving for A^T , and so obtaining $A = (A^T)^T$. The reader should do this.

The matrix $D = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$ in Example 2.1.9 has the property that $D = D^T$. Such matrices are important; a matrix A is called **symmetric** if $A = A^T$. A symmetric matrix A is necessarily square (if A is $m \times n$, then A^T is $n \times m$, so $A = A^T$ forces n = m). The name comes from the fact that these matrices exhibit a symmetry about the main diagonal. That is, entries that are directly across the main diagonal from each other are equal.

For example, $\begin{bmatrix} a & b & c \\ b' & d & e \\ c' & e' & f \end{bmatrix}$ is symmetric when b = b', c = c', and e = e'.

Example 2.1.11

If A and B are symmetric $n \times n$ matrices, show that A + B is symmetric.

Solution. We have $A^T = A$ and $B^T = B$, so, by Theorem 2.1.2, we have $(A+B)^T = A^T + B^T = A + B$. Hence A+B is symmetric.

Example 2.1.12

Suppose a square matrix A satisfies $A = 2A^T$. Show that necessarily A = 0.

Solution. If we iterate the given equation, Theorem 2.1.2 gives

$$A = 2A^{T} = 2[2A^{T}]^{T} = 2[2(A^{T})^{T}] = 4A$$

Subtracting A from both sides gives 3A = 0, so $A = \frac{1}{3}(0) = 0$.

Exercises for 2.1

Exercise 2.1.1 Find a, b, c, and d if

a.
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c-3d & -d \\ 2a+d & a+b \end{bmatrix}$$

b.
$$\begin{bmatrix} a-b & b-c \\ c-d & d-a \end{bmatrix} = 2 \begin{bmatrix} 1 & 1 \\ -3 & 1 \end{bmatrix}$$

c.
$$3 \begin{bmatrix} a \\ b \end{bmatrix} + 2 \begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

d.
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} b & c \\ d & a \end{bmatrix}$$

- b. $(a \ b \ c \ d) = (-2, \ -4, \ -6, \ 0) + t(1, \ 1, \ 1, \ 1),$ t arbitrary
- d. a = b = c = d = t, t arbitrary

Exercise 2.1.2 Compute the following:

a)
$$\begin{bmatrix} 3 & 2 & 1 \\ 5 & 1 & 0 \end{bmatrix} - 5 \begin{bmatrix} 3 & 0 & -2 \\ 1 & -1 & 2 \end{bmatrix}$$

b) $3 \begin{bmatrix} 3 \\ -1 \end{bmatrix} - 5 \begin{bmatrix} 6 \\ 2 \end{bmatrix} + 7 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
c) $\begin{bmatrix} -2 & 1 \\ 3 & 2 \end{bmatrix} - 4 \begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix} + 3 \begin{bmatrix} 2 & -3 \\ -1 & -2 \end{bmatrix}$
d) $\begin{bmatrix} 3 & -1 & 2 \end{bmatrix} - 2 \begin{bmatrix} 9 & 3 & 4 \end{bmatrix} + \begin{bmatrix} 3 & 11 & -6 \end{bmatrix}$
e) $\begin{bmatrix} 1 & -5 & 4 & 0 \\ 2 & 1 & 0 & 6 \end{bmatrix}^T$ f) $\begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & -4 \\ -2 & 4 & 0 \end{bmatrix}^T$
g) $\begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} - 2 \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}^T$
h) $3 \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}^T - 2 \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$

b.
$$\begin{bmatrix} -14\\ -20 \end{bmatrix}$$

d. $(-12, 4, -12)$

f.
$$\begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 4 \\ 2 & -4 & 0 \end{bmatrix}$$

h.
$$\begin{bmatrix} 4 & -1 \\ -1 & -6 \end{bmatrix}$$

Exercise 2.1.3 Let $A = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 & 2 \\ 0 & 1 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 3 \\ -1 & 0 \\ 1 & 4 \end{bmatrix}$, and $E = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$. Compute the following (where possible).

a) 3A - 2Bb) 5Cc) $3E^{T}$ d) B + De) $4A^{T} - 3C$ f) $(A + C)^{T}$ g) 2B - 3Eh) A - Di) $(B - 2E)^{T}$

b.
$$\begin{bmatrix} 15 & -5\\ 10 & 0 \end{bmatrix}$$

d. Impossible
f.
$$\begin{bmatrix} 5 & 2\\ 0 & -1 \end{bmatrix}$$

h. Impossible

Exercise 2.1.4 Find A if:

a.
$$5A - \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} = 3A - \begin{bmatrix} 5 & 2 \\ 6 & 1 \end{bmatrix}$$

b. $3A - \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 5A - 2\begin{bmatrix} 3 \\ 0 \end{bmatrix}$

b.
$$\begin{bmatrix} 4\\ \frac{1}{2} \end{bmatrix}$$

Exercise 2.1.5 Find *A* in terms of *B* if:

a)
$$A + B = 3A + 2B$$
 b) $2A - B = 5(A + 2B)$

b.
$$A = -\frac{11}{3}B$$

Exercise 2.1.6 If X, Y, A, and B are matrices of the same size, solve the following systems of equations to obtain X and Y in terms of A and B.

a)
$$5X + 3Y = A$$

 $2X + Y = B$
b) $4X + 3Y = A$
 $5X + 4Y = B$

b. X = 4A - 3B, Y = 4B - 5A

Exercise 2.1.7 Find all matrices X and Y such that:

a)
$$3X - 2Y = \begin{bmatrix} 3 & -1 \end{bmatrix}$$
 b) $2X - 5Y = \begin{bmatrix} 1 & 2 \end{bmatrix}$

b. $Y = (s, t), X = \frac{1}{2}(1+5s, 2+5t); s \text{ and } t \text{ arbitrary}$

Exercise 2.1.8 Simplify the following expressions where A, B, and C are matrices.

- a. 2[9(A-B)+7(2B-A)]-2[3(2B+A)-2(A+3B)-5(A+B)]
- b. 5[3(A-B+2C)-2(3C-B)-A]+2[3(3A-B+C)+2(B-2A)-2C]

b. $A = p \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + q \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + r \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + s \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ for some numbers p, q, r, and s.

b. If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then $(p, q, r, s) = \frac{1}{2}(2d, a + b - c - d, a - b + c - d, -a + b + c + d)$.

Exercise 2.1.10 Let $A = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$, and $C = \begin{bmatrix} 3 & 0 & 1 \end{bmatrix}$. If rA + sB + tC = 0 for some scalars r, s, and t, show that necessarily r = s = t = 0.

Exercise 2.1.11

- a. If Q + A = A holds for every $m \times n$ matrix A, show that $Q = 0_{mn}$.
- b. If A is an $m \times n$ matrix and $A + A' = 0_{mn}$, show that A' = -A.
- b. If A + A' = 0 then -A = -A + 0 = -A + (A + A') = (-A + A) + A' = 0 + A' = A'

Exercise 2.1.12 If *A* denotes an $m \times n$ matrix, show that A = -A if and only if A = 0.

Exercise 2.1.13 A square matrix is called a **diagonal** matrix if all the entries off the main diagonal are zero. If A and B are diagonal matrices, show that the following matrices are also diagonal.

- a) A + B b) A B
- c) kA for any number k

b. 20A - 7B + 2C

Exercise 2.1.9 If A is any 2×2 matrix, show that:

a.
$$A = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
 for some numbers $a, b, c, and d$.

b. Write $A = \text{diag}(a_1, \ldots, a_n)$, where a_1, \ldots, a_n are the main diagonal entries. If B = $\text{diag}(b_1, \ldots, b_n)$ then $kA = \text{diag}(ka_1, \ldots, ka_n)$.

Exercise 2.1.14 In each case determine all *s* and *t* such that the given matrix is symmetric:

a)
$$\begin{bmatrix} 1 & s \\ -2 & t \end{bmatrix}$$

b) $\begin{bmatrix} s & t \\ st & 1 \end{bmatrix}$
c) $\begin{bmatrix} s & 2s & st \\ t & -1 & s \\ t & s^2 & s \end{bmatrix}$
d) $\begin{bmatrix} 2 & s & t \\ 2s & 0 & s+t \\ 3 & 3 & t \end{bmatrix}$

b.
$$s = 1$$
 or $t = 0$

d.
$$s = 0$$
, and $t = 3$

Exercise 2.1.15 In each case find the matrix A.

a.
$$\left(A+3\begin{bmatrix}1&-1&0\\1&2&4\end{bmatrix}\right)^{T} = \begin{bmatrix}2&1\\0&5\\3&8\end{bmatrix}$$

b. $\left(3A^{T}+2\begin{bmatrix}1&0\\0&2\end{bmatrix}\right)^{T} = \begin{bmatrix}8&0\\3&1\end{bmatrix}$
c. $\left(2A-3\begin{bmatrix}1&2&0\end{bmatrix}\right)^{T} = 3A^{T}+\begin{bmatrix}2&1&-1\end{bmatrix}^{T}$
d. $\left(2A^{T}-5\begin{bmatrix}1&0\\-1&2\end{bmatrix}\right)^{T} = 4A-9\begin{bmatrix}1&1\\-1&0\end{bmatrix}$

b.
$$\begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix}$$

d.
$$\begin{bmatrix} 2 & 7 \\ -\frac{9}{2} & -5 \end{bmatrix}$$

Exercise 2.1.16 Let A and B be symmetric (of the same size). Show that each of the following is symmetric.

a) (A - B) b) kA for any scalar k

b. $A = A^T$, so using Theorem 2.1.2, $(kA)^T = kA^T = kA$.

Exercise 2.1.17 Show that $A + A^T$ and AA^T are symmetric for *any* square matrix A.

Exercise 2.1.18 If A is a square matrix and $A = kA^T$ where $k \neq \pm 1$, show that A = 0.

Exercise 2.1.19 In each case either show that the statement is true or give an example showing it is false.

- a. If A + B = A + C, then B and C have the same size.
- b. If A + B = 0, then B = 0.
- c. If the (3, 1)-entry of A is 5, then the (1, 3)entry of A^T is -5.
- d. A and A^T have the same main diagonal for every matrix A.
- e. If B is symmetric and $A^T = 3B$, then A = 3B.
- f. If A and B are symmetric, then kA + mB is symmetric for any scalars k and m.
- b. False. Take B = -A for any $A \neq 0$.
- d. True. Transposing fixes the main diagonal.
- f. True. $(kA + mB)^T = (kA)^T + (mB)^T = kA^T + mB^T = kA + mB$

Exercise 2.1.20 A square matrix W is called **skew-symmetric** if $W^T = -W$. Let A be any square matrix.

- a. Show that $A A^T$ is skew-symmetric.
- b. Find a symmetric matrix S and a skewsymmetric matrix W such that A = S + W.
- c. Show that S and W in part (b) are uniquely determined by A.
- c. Suppose A = S + W, where $S = S^T$ and $W = -W^T$. Then $A^T = S^T + W^T = S W$, so $A + A^T = 2S$ and $A A^T = 2W$. Hence $S = \frac{1}{2}(A + A^T)$ and $W = \frac{1}{2}(A A^T)$ are uniquely determined by A.

Exercise 2.1.21 If W is skew-symmetric (Exercise 2.1.20), show that the entries on the main diagonal are zero.

Exercise 2.1.22 Prove the following parts of Theorem 2.1.1.

- a) (k+p)A = kA + pA b) (kp)A = k(pA)
- b. If $A = [a_{ij}]$ then $(kp)A = [(kp)a_{ij}] = [k(pa_{ij})] = k[pa_{ij}] = k(pA)$.

Exercise 2.1.23 Let A, A_1, A_2, \ldots, A_n denote matrices of the same size. Use induction on n to verify the following extensions of properties 5 and 6 of Theorem 2.1.1.

- a. $k(A_1 + A_2 + \dots + A_n) = kA_1 + kA_2 + \dots + kA_n$ for any number k
- b. $(k_1 + k_2 + \dots + k_n)A = k_1A + k_2A + \dots + k_nA$ for any numbers k_1, k_2, \dots, k_n

Exercise 2.1.24 Let *A* be a square matrix. If $A = pB^T$ and $B = qA^T$ for some matrix *B* and numbers *p* and *q*, show that either A = 0 = B or pq = 1. [*Hint*: Example 2.1.7.]